Improved Trajectory Planning for On-Road Self-Driving Vehicles via Combined Graph Search, Optimization & Topology Analysis

Tianyu Gu
Electrical and Computer Engineering
Thesis Defense
February 14, 2017
Agenda

- Introduction / Related Work / Motivation
- Proposed Planning Framework
 - Approach
 - Proposed Method I: Region Segmentation w/ Topology Analysis
 - Proposed Method II: Search-based Planning w/ Edge-augmented Graph
 - Adapted Method I: LQR Path/Trajectory Smoothing
 - Proposed Method III: Sampling-based Maneuver Pattern Analysis
 - Adapted Method II: Focused Trajectory Optimization w/ Iterative-LQR
- Results
- Conclusion/Contribution/Future Work
Introduction

• Self-driving / Autonomous-driving Vehicles

 Boss Cadillac Google Uber

• Social Benefits

 Safety

 Two million car crashes per year in the United States [1].

 Good Autonomy Software!

 Wasted hours in traffic jams.
 Wasted parking space to city.

 Autonomous Driving

 Efficiency

 Freedom

 Driving is exhausting.
 Driving is difficult/impossible for some.

Introduction

• Thesis Scope

Commonly used architecture (at least conceptually):
1. Urban challenge entries.
2. Main self-driving players.

Related Work

• Sampling-based Planners

• Optimization-based Planners

• Hybrid Sampling/Optimization Planners

• Topology-aware Planners
Related Work

- Sampling-based Planners

1. Lightweight primitive sampling with model-based evaluation.
2. Deterministic runtime with termination guarantee.
3. Search space is comprehensive with respect to the continuous space of interest.

Pro

Con

1. Sampling sub-optimality, not converging to local minimum.
2. Search space blow-up due to the curse of dimensionality.
Related Work

- Optimization-based Planners

Direct Method

- Search in the continuous space, alleviate sampling sub-optimality.
- Efficient if implemented properly, compared to the thousands, even millions of sampled trajectory evaluations.

Indirect Method

- Lacks global awareness, can get stuck in the wrong local minimum.
- Non-deterministic runtime w/o termination guarantee
- Difficult to parallelize the computation.

[Rösmann et al., 2012]

[Thrun et al., 2006]

[van den Berg, 2016]
Related Work

- Hybrid Sampling/Optimization Planners

Hybrid A* + Conjugate Gradient Optimization

- Achieve local minimum while having global awareness.
- Moderate computation overhead.

Lattice Sampling + Simplex Optimization

- Pure path/speed planning, independent spatial/temporal planning.
- Direct trajectory optimization by manipulating the sampled configuration states. Difficult to guarantee plan feasibility.
Related Work

- Topology-aware Motion Planners

Visibility Graph & Voronoi Graph

- [Schmitzberger, 2002] & [Choset, 2005]

Cell Decomposition + Mixed-Integer-Quadratic Programming

- [Parker, 2016]

Homology Marker Function

- [Bhattacharya, 2012]

Pro

1. Explicit topological awareness.
2. Focus (narrow down) the search space.

Con

1. Pure spatial topological analysis.
2. Co-terminal requirements for paths under analysis.
Motivation

• Thesis Statement:

By taking advantage of a combined sampling-n-search, optimization and topology analysis approach, we can avoid the pitfalls of standalone methods, and equip self-driving cars with improved high-level reasoning capabilities for on-road trajectory planning.

Requirement 1: a deliberative trajectory planning system.

Requirement 2: spatiotemporal (trajectory) planning.

Requirement 3: tactical reasoning capability with topological awareness.

Requirement 4: global awareness with the ability to converge to a local optimum.

Requirement 5: apply to self-driving passenger vehicle on-road driving.
Proposed Planning Framework

- Technical Overview

Sampling & Search/Topology-based Planning
- Spatial Graph Segmentation based on Topology Analysis
- Reference Path Planning with Edge-augmented Graph Search
- Trajectory Sampling-based Maneuver Pattern Analysis

Optimization-based Planning
- Reference Path Smoothing with LQR Controller
- Reference Speed Profile Generation
- Focused Trajectory Refinement with Iterative-LQR Optimizer

High-level Tactical Reasoning Capability

By taking advantage of a combined sampling-n-search, optimization and topology analysis approach, we can avoid pitfalls of standalone methods, and equip self-driving cars with improved high-level reasoning capabilities for on-road trajectory planning.
Proposed Method I: Region Segmentation w/ Topology Analysis
Proposed Method I: Region Segmentation w/ Topology Analysis

- Homology Marker Function-based Topological Analysis

Biot-Savart Law:
A steady current flowing through a wire generates a magnetic field \mathbf{B}.

$$B(r) = \frac{\mu_0 I}{4\pi} \int \frac{dl \times (l-r)}{||l-r||^3}$$

Homology Marker Function

$$\mathcal{H}(\mathcal{T}) = \int_{\mathcal{T}} \mathbf{B} \cdot dl$$

$\mathcal{H}(\mathcal{T}_1) = \mathcal{H}(\mathcal{T}_3) \neq \mathcal{H}(\mathcal{T}_2)$

- \mathcal{T}_1 & \mathcal{T}_3 are homological.
- \mathcal{T}_1 & \mathcal{T}_2 are NOT homological.

Magnetic field generated to distinguish trajectories.
Proposed Method I: Region Segmentation w/ Topology Analysis

- Segment directed acyclic graph (DAG) into several sub-graphs

No obstacle \Rightarrow No segmentation

Obstacle \Rightarrow Two Sub-Graphs
Proposed Method I: Region Segmentation w/ Topology Analysis

- Dynamic Programming-Inspired Backward Topology Induction

Step 1: Construct Topology Graph

\[\Delta_i^H = \mathcal{H}(e_i) = \int_{e_i} B \cdot dl \]

Step 2: Backward Topology Induction

Dynamic Programming

\[
\begin{align*}
\Delta_i^H + \Delta_j^H &= \Delta_i^H + \Delta_j^H \\
\Delta_i^H + \Delta_j^H &= \Delta_i^H + \Delta_j^H
\end{align*}
\]

Step 3: Forward Region Marking
Proposed Method II: Search-based Planning w/ Edge-augmented Graph
Proposed Method II: Search-based Planning w/ Edge-augmented Graph

- Motivation: why do we need edge-augmented graph?

Edge-based Cost:
- What if the cost is associated with two neighboring edges?

Node-based Cost:

- Smoothing Cost
- Contractive Force in Elastic-Band

[Diagram showing edge-based and node-based costs with an example of smoothing cost and contractive force in elastic-band]
Proposed Method II: Search-based Planning w/ Edge-augmented Graph

- Construct & Search over Edge-augmented Graph

 1. Construct regular DAG

 2. Evaluate graph node/edge

 3. Construct edge-augmented node

 4. Evaluate edge-augmented node

 5. Build edge-augmented graph

 Edge-augmented graph is still DAG!

 6. Search DAG with dynamic programming or topological search.
Adapted Method I: LQR-based Path/Trajectory Smoothing
Adapted Method I: LQR-based Path/Trajectory Smoothing

- **Motivation:** How to convert coarse graph plan to smooth path/trajectory?

 - Spatial Piecewise-Linear (Path) Plan
 - Spatiotemporal Piecewise-Linear (Trajectory) Plan

 Roughly captures the gist of maneuver.

 Not model-feasible, non-smooth.

Solution:

- Treat piecewise linear plan as a coarse reference.
- Use a realistic vehicle model and a trajectory tracking controller to “follow” the reference.
- Keep the trace of the model states as the smoothed trajectory.

What vehicle model to use?

- Geometric tracker, e.g., pure pursuit.
- Optimal trackers, e.g., LQR-based tracker.
Adapted Method I: LQR-based Path/Trajectory Smoothing

- Path/Trajectory Smoothing

Lateral Tracking Control

State Transformation:
\[
x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} d \\ \theta^* - \theta \\ \delta \end{bmatrix}
\]

Dynamics Linearization:
\[
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & v & 0 \\ 0 & 0 & -\frac{v}{L} \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \delta
\]

Longitudinal Tracking Control

State Transformation:
\[
x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} l \\ v^* - v \end{bmatrix}
\]

Dynamics Linearization:
\[
\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \end{bmatrix} a
\]

Linear Quadratic Regulator

Minimize:
\[
J = \int_0^\infty (x^T Q x + u^T R u) \, dt
\]

Control:
\[
u = -K \cdot x
\]

\[
K = R^{-1} B^T P
\]

\[
A^T P + PA - PBR^{-1} B^T P + Q = 0
\]

Smoothed model-feasible path/trajectory
Proposed Method III: Sampling-based Maneuver Pattern Analysis

1. Spatial Graph Segmentation based on Topology Analysis
2. Reference Path Planning with Edge-augmented Graph Search
3. Reference Path Smoothing with LQR Controller
4. Reference Speed Profile Generation
5. Trajectory Sampling-based Maneuver Pattern Analysis
6. Trajectory Smoothing with LQR Controller
7. Focused Trajectory Refinement with Iterative-LQR Optimizer

Reference -> Trajectory
Proposed Method III: Sampling-based Maneuver Pattern Analysis

Motivation: factors other than topology that matter for pattern distinction of spatiotemporal trajectory?

Co-terminal

Homology Marker Function
\[\mathcal{H}(\mathcal{T}) = \int_{\mathcal{T}} B \cdot dl \]

Region-based Distinction

Pseudo-Homology:
\[\mathcal{H}(T' + T'_h) = \mathcal{H}(T'' + T''_h) \]

Helper trajectory for corridor-like region:
Proposed Method III: Sampling-based Maneuver Pattern Analysis

Motivation: factors other than topology that matter for pattern distinction of spatiotemporal trajectory?

Conservative **Aggressive**

Pseudo-Homological

Overtaking Sequence-based Distinction
- Forward simulate APV & objects.
- Keep track of the overtaking timestamp.
- Sort obstacles (identifier) based on the overtaking timestamp.

Maneuver Pattern Distinction Tree
Adapted Method II: Focused Trajectory Optimization w/ Iterative-LQR
Adapted Method II: Focused Trajectory Optimization w/ Iterative-LQR

- **Iterative LQR Backgrounds**

 Smoothened model-feasible path/trajectory
 - Does not consider any costs other than tracking errors, e.g., obstacles.
 - Smoothed trajectory is only model-feasible, but not execution-feasible.

 Trajectory Representation & Cost

 \[x_{i+1} = f_d(x_i, u_i) \]
 \[X^{(k)} = \{x_0, x_1, \ldots, x_i, \ldots, x_{N-1}, x_N \} \]
 \[U^{(k)} = \{u_0, u_1, \ldots, u_i, \ldots, u_{N-1} \} \]

 Iterative Linear Quadratic Regulator
 (1st order Differential Dynamic Programming)

 \[\delta x \text{ incurred at (i-1)}^{th} \text{ timestamp.} \]
 \[\delta u \text{ to be determined at (i)}^{th} \text{ timestamp.} \]

 Perturbation:

 \[\delta u^* = \arg \min_{\delta u} \tilde{Q}(\delta x, \delta u) \]

 \[= k + K \cdot \delta x \]

 Singular Value Decomposition

 \[Q_{uu} = P \Sigma Q^T \]
 \[Q_{uu}^{-1} = Q \Sigma^{-1} P^T \]

 \[k = -Q_{uu}^{-1} Q_u \]
 \[K = -Q_{uu}^{-1} Q_{ux} \]

 \[\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \ddots & \vdots \\ 0 & \ddots & \sigma_n \end{bmatrix} \]
 \[\Sigma^{-1} = \begin{bmatrix} \frac{1}{\sigma_1 + \lambda} & 0 & 0 \\ 0 & \ddots & \vdots \\ 0 & \ddots & \frac{1}{\sigma_n + \lambda} \end{bmatrix} \]

 \[+ \lambda \]
Adapted Method II: Focused Trajectory Optimization w/ Iterative-LQR

Focused Iterative-LQR & Cost Function

Determine λ

Levenberg-Marquardt Heuristics

- **iLQR Optimization making progress:** λ ❯
- **iLQR Optimization not making progress:** λ ➡

Focused Line-Search Heuristics

- **Optimization violating maneuver pattern constraint:** λ ➡
- **iLQR Optimization making progress:** λ ❯
- **Line-Search Optimization making progress:** λ ↔
- **iLQR Optimization not making progress:** λ ➡

Cost Function

Cost penalizes certain undesirable aspect of the plan/trajectory.

Total Cost:

$$J(X, U) = g_N(x_N) + \sum_{i=0}^{N-1} g(x_i, u_i)$$

- **Cost terms:**
 - $g(x_i, u_i) = \sum_{k=1}^{M} \omega_k c_k(x_i, u_i)$
 - $g_N(x_N) = \sum_{k=1}^{M} \omega_k c_k(x_N, 0)$

Weights Cost Terms

Better be Continuous?

- **Edge-Augmented Graph Search** ✗
- **Topological Region/Pattern Selection** ✗
- **Iterative-LQR Trajectory Optimization** ✓
Adapted Method II: Focused Trajectory Optimization w/ Iterative-LQR

- **Cost Function Design**

 iLQR is underlying Newton’s Method:
 - Convex Optimization
 - 2nd-order Continuous

 Key Results in Convex Optimization
 - 2nd-order continuous, monotonically non-decreasing convex function $h(y)$
 - 2nd-order continuous, differentiable convex $g(x)$

 $f = (h \circ g)(x) = h(g(x))$

 Still Convex!

 Quadratic

 State/Control Variable

 E.g., steering, speed, swirl, acceleration, etc.

 Distance Function

 - Disk
 - Polygon
 - Polyline

 Convex Modulation Function

 Convex Feature Function

 Total Cost Function

 Behavioral Feature

 $$ g = e_{\text{obstacle}}^h(\omega_{\text{dist}}) + e_{\text{pol}}^h(\omega_{\text{pol}}) + e_{\text{speed}}^h(\omega_{\text{speed}}) + e_{\text{lat-acc}}^h(\omega_{\text{lat-acc}}) + e_{\text{swirl}}^h(\omega_{\text{swirl}}) + e_{\text{lat-acc}}^h(\omega_{\text{lat-acc}}) $$

 Constraint Feature:
 - Penalty Method
 - Constrained Iterative-LQR Optimization
 - Execution Feasible Trajectory

 Non-convex Features

 Penetrated Distance:

 Distance → **Penetrated Distance** → **Non-Convex!**

 Local cost quadratization → Topological Structure
Results

- Planning Framework / Algorithmic Flow
Results

• Experiment Setup

Scenario:
A particular setup of the environment elements including lanes, obstacles and the APV.

Snapshot:
Plots of the environment elements’ states and the planning outcome of each planning module at a given time-stamp.

Overlay:
A plot of the overlaid states of the environment elements’ states over a time period that the APV demonstrates a maneuver.
Results

- Simulation Scenario 1
Results

- Simulation Scenario 2
Results

- Simulation Scenario 3
Results

- Simulation Scenario 4
Results

- Simulation Scenario 5
Results

- On-Vehicle (Simulation)
Results

• On-Vehicle (Closed Course)

Autonomous Driving Test (On-Vehicle)

Avoid Tightly Spaced Obstacles
Results

- On-Vehicle (Closed Course)
Results

• On-Vehicle (Schenley Park)
Results

- Past demo video footages.

[33-mile Autonomous Drive from Cranberry, Pennsylvania to Pittsburgh International Airport](Link)

[Highway Driving Near Capitol Hill, Washington DC I-395 South Multiple lane merges & changes](Link)
Conclusions

- **Comparison**

<table>
<thead>
<tr>
<th>No #</th>
<th>Methods</th>
<th>\mathcal{F}_{1a}</th>
<th>\mathcal{F}_{1b}</th>
<th>\mathcal{F}_{2}</th>
<th>\mathcal{F}_{3}</th>
<th>\mathcal{F}_{4}</th>
<th>\mathcal{F}_{5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Boss’s Local Planner [Ferguson et al., 2008]</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>M2</td>
<td>Junior’s RNDF Follower [Montemerlo et al., 2008]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>M3</td>
<td>Nonholonomic Potential field [Huang et al., 2006]</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>M4</td>
<td>Biased RRT [Kuwata et al., 2008]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>M5</td>
<td>Spatiotemporal lattice [Ziegler and Stiller, 2009, McNaughton, 2011]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>M6</td>
<td>Timed Elastic Band [Roesmann et al., 2012]</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>M7</td>
<td>Hybrid-A* + Conjugate Gradient Descent Smoothing [Dolgov et al., 2008]</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>M8</td>
<td>iLQR/DDP [Li and Todorov, 2004b, van den Berg, 2016, Tassa et al., 2014]</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>M9</td>
<td>Cell decomposition + Mixed-Integer Programming [Park et al., 2016]</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>M10</td>
<td>Homotopy marker function + Timed Elastic Band [Rösmann et al., 2015]</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>P</td>
<td>Proposed</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Conclusions

• Summary

Requirement 1: a deliberative trajectory planning system.
Reference and Trajectory Planning have long spatial (100m) or temporal horizon (6s).

Requirement 2: spatiotemporal (trajectory) planning.
Maneuver pattern analysis and focused trajectory optimization explicitly plan spatiotemporally.

Requirement 3: tactical reasoning capability with topological awareness.
Region segmentation and maneuver pattern analysis provides tactical reasoning capability.

Requirement 4: global awareness with the ability to converge to a local optimum.
Reference planning and maneuver pattern analysis both perform global sampling.

Requirement 5: apply to self-driving passenger vehicle on-road driving.
Extensively experimented on a real self-driving vehicle.
Conclusions

- Contributions

 1. A Hybrid Trajectory Planning Framework
 2. Search over Edge-augmented Graph for Reference Path Planning
 3. Topological Backward Propagation Algorithm for Region (Sub-Graph) Segmentation
 4. Sampling-based Maneuver Pattern Analysis/Seeding Trajectory Generation for On-Road Self-Driving
 5. Adapted Linear Quadratic Regulator (LQR) and Iterative-LQR for Trajectory Smoothing/Optimization
 6. Identification of Useful Cost Function Generation Principles
Future Work

- TBC: the fusion of sampling-based and optimization-based method.
- TBC: The inclusion in topological analysis in a trajectory planning system.
- Automated parameter tuning through machine learning techniques.
- Unstructured learning of driving skill, a.k.a, neural network, etc.
- Misc:
 - More complex/realistic vehicle model.
 - Planning with better shape representations.
 - Faster collision checking (distance function evaluation).
 - Faster homology information calculation.
Publications

- Gu, T., et al. (2013). Focused trajectory planning for autonomous on-road driving. Intelligent Vehicles Symposium (IV), 2013, IEEE.
Acknowledgement

• Thesis Committee Members:
 – Prof. John M. Dolan
 – Prof. Howie Choset
 – Prof. Gary Overett
 – Dr. Jin-Woo Lee

• Former GM-CMU ADCRL Colleagues:
 – Prof. Raj Rajkumar
 – Dr. Bakhtiar Litkouhi
 – Priyantha Mudalige
 – Jarrod Snider
 – Junqing Wei
 – Dr. Hyunggi Cho
 – Dr. Junsung Kim
 – Gaurav Bhatia
 – Wenda Xu
 – Dr. Jongho Lee
 – Chiyu Dong

• Former Google X (Waymo) Colleagues:
 – Dr. Nathanial Fairfield
 – Dr. Alexandru Sucan

• Uber ATG Colleagues:
 – Prof. Antony Stentz
 – Prof. Zico Kolter
 – Dr. Michael Phillips